Model-Free Approach to DC Microgrid Optimal Operation under System Uncertainty Based on Reinforcement Learning
Energies, ISSN: 1996-1073, Vol: 16, Issue: 14
2023
- 4Citations
- 5Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
University Gadjah Mada Researcher Describes Findings in Emerging Technologies (Model-Free Approach to DC Microgrid Optimal Operation under System Uncertainty Based on Reinforcement Learning)
2023 JUL 28 (NewsRx) -- By a News Reporter-Staff News Editor at Tech Daily News -- Data detailed on emerging technologies have been presented. According
Article Description
There has been tremendous interest in the development of DC microgrid systems which consist of interconnected DC renewable energy sources. However, operating a DC microgrid system optimally by minimizing operational cost and ensures stability remains a problem when the system’s model is not available. In this paper, a novel model-free approach to perform operation control of DC microgrids based on reinforcement learning algorithms, specifically Q-learning and Q-network, has been proposed. This approach circumvents the need to know the accurate model of a DC grid by exploiting an interaction with the DC microgrids to learn the best policy, which leads to more optimal operation. The proposed approach has been compared with with mixed-integer quadratic programming (MIQP) as the baseline deterministic model that requires an accurate system model. The result shows that, in a system of three nodes, both Q-learning (74.2707) and Q-network (74.4254) are able to learn to make a control decision that is close to the MIQP (75.0489) solution. With the introduction of both model uncertainty and noisy sensor measurements, the Q-network performs better (72.3714) compared to MIQP (72.1596), whereas Q-learn fails to learn.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know