Predicting the Remaining Useful Life of Supercapacitors under Different Operating Conditions
Energies, ISSN: 1996-1073, Vol: 17, Issue: 11
2024
- 33Citations
- 7Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
With the rapid development of the new energy industry, supercapacitors have become key devices in the field of energy storage. To forecast the remaining useful life (RUL) of supercapacitors, we introduce a new technology that integrates variational mode decomposition (VMD) with a bidirectional long short-term memory (BiLSTM) neural network. Firstly, the aging experiments of supercapacitors under various temperatures and voltages were carried out to obtain aging data. Then, VMD was implemented to decompose the aging data, which helped to eliminate disturbances, including capacity recovery and test errors. Then, the hyperparameters of BiLSTM were adjusted, employing the sparrow search algorithm (SSA) to improve the consistency between the input data and the network structure. After obtaining the optimal hyperparameters of BiLSTM, the decomposed aging data were input into BiLSTM for prediction. The experimental results showed that the VMD-SSA-BiLSTM model proposed in this paper has high prediction accuracy and high robustness under different temperatures and voltages, with an average RMSE of 0.112519, a decrease of 44.3% compared to BiLSTM, and a minimum of 0.031426.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know