Effect of Isotropic and Anisotropic Permeability on Gas Production Behavior of Site NGHP-01-10D in Krishna-Godavari Basin
Energies, ISSN: 1996-1073, Vol: 17, Issue: 21
2024
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
This study reports an investigation into both isotropic and anisotropic permeability effects on gas production behavior during depressurization-induced natural gas hydrate dissociation at site NGHP-01-10D in the Krishna-Godavari basin. Numerical simulations were performed on a reservoir-scale model incorporating a single vertical well, examining different scenarios of permeability ratios (r). The investigation assessed gas and water production rates, cumulative production volumes, the gas-to-water ratio, and the spatial distribution of reservoir parameters throughout a production duration of 3 years. The findings indicate that permeability anisotropy has a substantial impact on hydrate dissociation and gas recovery. For r > 1, horizontal pressure propagation was promoted and gas production increased. For example, at t = 1100 days, the total gas production improved from 7.88 × 10 ST m for r = 1 to 55.9 × 10 ST m for r = 10. For r < 1, vertical pressure propagation resulted in higher water production with concomitantly lower rates of gas production rates. Spatial distribution analysis revealed that higher r values led to more extensive radial propagation of pressure drop, temperature decrease, gas saturation increase, and hydrate dissociation. The study concludes that higher horizontal permeability enhances depressurization effects, resulting in higher gas production rates and more favorable gas-to-water ratios.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know