Probabilistic Estimation of Parameters for Lubrication Application with Neural Networks
Eng, ISSN: 2673-4117, Vol: 5, Issue: 4, Page: 2428-2440
2024
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- Blog Mentions1
- Blog1
Article Description
This paper investigates the use of neural networks to predict characteristic parameters of the grease application process pressure curve. A combination of two feed-forward neural networks was used to estimate both the value and the standard deviation of selected features. Several neuron configurations were tested and evaluated in their capability to make a probabilistic estimation of the lubricant’s parameters. The value network was trained with a dataset containing the full set of features and with a dataset containing its average values. As expected, the full network was able to predict noisy features well, while the average network made smoother predictions. This is also represented by the networks’ R2 values which are 0.781 for the full network and 0.737 for the mean network. Several further neuron configurations were tested to find the smallest possible configuration. The analysis showed that three or more neurons deliver the best fit over all features, while one or two neurons are not sufficient for prediction. The results showed that the grease application process pressure curve via pressure valves can be estimated by using neural networks.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know