Ambulatory Monitoring Using Knitted 3D Helical Coils †
Engineering Proceedings, ISSN: 2673-4591, Vol: 15, Issue: 1
2022
- 3Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We present a highly sensitive wearable angular position sensor to measure joint movement. The sensor is a 3D helical coil knitted in the sleeve of a garment by circularly knitting thin insulated metal wire and yarn simultaneously. The sensing mechanism is based on the variation of the mutual inductance between windings. A 167 μH change is measured for knee movement from fully stretched to completely bent. A double cross coupled FET pair transforms the low-Q coils into a high-Q system giving a maximum frequency variation of 145 kHz for knee bending.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know