Land use/land cover (LULC) using landsat data series (MSS, TM, ETM+ and OLI) in azrou forest, in the central middle atlas of Morocco
Environments - MDPI, ISSN: 2076-3298, Vol: 5, Issue: 12, Page: 1-16
2018
- 163Citations
- 349Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Environments, Vol. 5, Pages 131: Land Use/Land Cover (LULC) Using Landsat Data Series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco
Environments, Vol. 5, Pages 131: Land Use/Land Cover (LULC) Using Landsat Data Series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle
Article Description
The study of land use/land cover (LULC) has become an increasingly important stage in the development of forest ecosystems strategies. Hence, the main goal of this study was to describe the vegetation change of Azrou Forest in the Middle Atlas, Morocco, between 1987 and 2017. To achieve this, a set of Landsat images, including one Multispectral Scanner (MSS) scene from 1987; one Enhanced Thematic Mapper Plus (ETM+) scene from 2000; two Thematic Mapper (TM) scenes from 1995 and 2011; and one Landsat 8 Operational Land Imager (OLI) scene from 2017; were acquired and processed. Ground-based survey data and the normalized difference vegetation index (NDVI) were used to identify and to improve the discrimination between LULC categories. Then, the maximum likelihood (ML) classification method was applied was applied, in order to produce land cover maps for each year. Three classes were considered by the classification of NDVI value: low-density vegetation; moderate-density vegetation, and high-density vegetation. Our study achieved classification accuracies of 66.8% (1987), 99.9% (1995), 99.8% (2000), 99.9% (2011), and 99.9% (2017). The results from the Landsat-based image analysis show that the area of low-density vegetation was decreased from 27.4% to 2.1% over the past 30 years. While, in 2017, the class of high-density vegetation was increased to 64.6% of the total area of study area. The results of this study show that the total forest cover remained stable. The present study highlights the importance of the image classification algorithms combined with NDVI index for better understanding the changes that have occurred in this forest. Therefore, the findings of this study could assist planners and decision-makers to guide, in a good manner, the sustainable land development of areas with similar backgrounds.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know