Tree species composition in mixed plantations influences plant growth, intrinsic water use efficiency and soil carbon stock
Forests, ISSN: 1999-4907, Vol: 12, Issue: 9
2021
- 7Citations
- 29Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Species interactions in mixed plantations can influence tree growth, resources capture and soil fertility of the stands. A combined approach of tree-ring analyses and carbon stable isotope was used to check tree growth and water use efficiency of two species, Populus alba L. and Juglans regia L., intercropped with each other and with N-fixing or competitive production species. Furthermore, soil analyses were performed to understand how the different intercropping systems can influence soil characteristics, in particular soil carbon stock. Dendrochronological data showed that during the first years, the growth of principal species was favored by intercropping. This positive effect decreased in the following years in most of intercropped stands, due to light competition with the crown of companion species. Carbon isotope data showed that P. alba and J. regia had the highest intrinsic water use efficiency when growing with Elaeagnus umbellata Thunb, a shrubby species with a shallow root system that favors a non-competitive exploitation of soil water resources. Finally, the intercropping of the principal species with Corylus avellana L. promoted the highest soil C stock. Our findings confirmed the importance to consider the plantation dynamics and wood formation in the long-run and to apply appropriate thinning and pruning interventions to counteract interspecific competition.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know