Prediction of Primary Deformation Modulus Based on Bearing Capacity: A Case on Forest Road with a Light Falling Weight Deflectometer Zorn ZFG 3000 GPS
Forests, ISSN: 1999-4907, Vol: 13, Issue: 11
2022
- 5Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Bearing capacity and compaction are among the most important and frequently used geotechnical parameters in road construction. The aim of this study was to determine the possibility of predicting the value of the primary deformation modulus E (obtained from measurements using a static plate load test—PLT) based on measurements with a Zorn light falling weight deflectometer (LFWD), type ZFG 3000 GPS, with a drop weight of 10 kg. A regression analysis was performed on 245 bearing capacity measurements that were taken on 46 forest road sections with various road surfaces. Different regression models were tested, from linear to logarithmic, polynomial, exponential and power models, but excluding polynomials of fourth and higher degree. The results showed that the prediction of E values (PLT) from the dynamic deformation modulus values E (LFWD) was possible. However, the reported unsatisfactory strength of the relationship between the two parameters was associated with a high risk of error (r = 0.64, R = 0.41, S = 49.78). Neither the use of more complex non-linear regression models, nor the use of multiple regression by introducing an additional estimator in the form of the s/v ratio, significantly improved estimation results. The quality of the prediction of the E value was not constant. It varied, depending on the type of forest road, the use of geosynthetic reinforcement and the type of road subgrade. During the study, it was also found that the quality of the prediction of the E value could be improved by limiting the range of E values tested from above. It is advisable to continue this type of research, as the obtained results could form the basis for future development of national standards for the use of LFWDs to control the bearing capacity and compaction of forest road pavements.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know