Physical and Mechanical Properties of High-Density Fiberboard Bonded with Bio-Based Adhesives
Forests, ISSN: 1999-4907, Vol: 14, Issue: 1
2023
- 18Citations
- 54Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The high demand for wood-based composites generates a greater use of wood adhesives. The current industrial challenge is to develop modified synthetic adhesives to remove harmful formaldehyde, and to test natural adhesives. The scope of the current research included the manufacturing of high-density fiberboards (HDF) using natural binders such as polylactic acid (PLA), polycaprolactone (PCL), and thermoplastic starch (TPS) with different resination (12%, 15%, 20%). The HDF with biopolymers was compared to a reference HDF, manufactured following the example of industrial technology, with commonly used adhesives such as urea-formaldehyde (UF) resin. Different mechanical and physical properties were determined, namely modulus of rupture (MOR), modulus of elasticity (MOE), internal bonding strength (IB), thickness swelling (TS), water absorption (WA), surface water absorption (SWA), contact angle, as well as density profile; scanning electron microscope (SEM) analysis was also performed. The results showed that increasing the binder content significantly improved the mechanical properties of the panels in the case of starch binder (MOR from 31.35 N mm to 40.10 N mm, IB from 0.24 N mm to 0.39 N mm for dry starch), and reduces these in the case of PLA and PCL. The wet method of starch addition improved the mechanical properties of panels; however, it negatively influenced the reaction of the panels to water (WA 90.3% for dry starch and 105.9% for wet starch after 24 h soaking). Due to dynamically evaporating solvents from the PLA and PCL binding mixtures, a development of the fibers’ resination (blending) techniques should be performed, to avoid the uneven spreading of the binder over the resinated material.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know