Identification of CpbZIP11 in Cyclocarya paliurus Involved in Environmental Stress Responses
Forests, ISSN: 1999-4907, Vol: 14, Issue: 10
2023
- 2Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
Article Description
Environmental stresses can disrupt protein structure, resulting in unfolded or misfolded proteins, thereby triggering endoplasmic reticulum (ER) stress. The unfolded protein response (UPR), particularly as activated by Arabidopsis AtbZIP60 gene, is pivotal for counteracting ER stress and ensuring cell survival. The medicinal plant, Cyclocarya paliurus, known for its wealth of beneficial compounds, is threatened by environmental stresses, limiting the exploration of its therapeutic potential. In order to better exploit and utilize its value, it is necessary to understand the signal pathway of environmental stresses. Here, we identify a homolog of AtbZIP60 in C. paliurus, termed CpbZIP11, which can be upregulated by tunicamycin. The conserved double stem-loop structure in its mRNA is spliced under environmental stresses. This splicing event results in a novel CpbZIP11 mRNA variant, leading to the production of a nuclear-localized CpbZIP11 protein with transcriptional activation activity in yeast. We further delve into the study of evolutionary lineage and motif conservation of CpbZIP11 homologs across various plant groups. This research illuminates the stress adaptation mechanisms in C. paliurus and deepens our understanding of the bZIP evolution, which endows versatility for the understanding of this transcription factor.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know