Cellulase and Xylanase Production by a Newly Isolated Penicillium crustosum Strain under Solid-State Fermentation, Using Water Hyacinth Biomass as Support, Substrate, and Inducer
Fermentation, ISSN: 2311-5637, Vol: 9, Issue: 7
2023
- 6Citations
- 27Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Cellulase and xylanase have been widely studied for bioconversion processes and applied in various industries. The high cost of these enzymes remains to be the major bottleneck for large-scale commercial application of lignocellulosic biorefinery. The use of agroindustrial residues and weeds as fermentation substrates is an important strategy to increase cellulolytic enzymes production and reduce costs. Penicillium crustosum was newly isolated and selected to study its enzyme production during solid-state fermentation (SSF). Natural and pretreated water hyacinth (WH) biomass was used as support, substrate and inducer of cellulases and xylanases. Thermochemical pretreatments of WH biomass at 121 °C and sulfuric acid at three concentrations (0.2, 0.6 and 1 M) were assayed. The pretreatments of WH biomass released mono- and oligo-saccharides that favored fungal growth and enzymes production on SSF. WH is a cost-effective substrate-support and inducer, which to be used as a solid medium, was impregnated with a saline solution, containing only (NH)SO, KHPO y MgCl. Maximum cellulases (carboxymethylcellulase (CMCase)) and xylanases productions of P. crustosum cultured on SSF were reached using the WH pretreated biomass with HSO 0.6 M and 121 °C. The simultaneous CMCase and xylanases production reached (647.51 and 4257.35 U/g dry WH, respectively) are among the highest values ever reported.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know