Effect of Photo Irradiation on the Anaerobic Digestion of Waste Sewage Sludge-Reduced Methane and Hydrogen Sulfide Productions
Fermentation, ISSN: 2311-5637, Vol: 9, Issue: 11
2023
- 3Citations
- 14Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Graduate School of Life Science and Systems Engineering Researcher Details Findings in Fermentation Research (Effect of Photo Irradiation on the Anaerobic Digestion of Waste Sewage Sludge-Reduced Methane and Hydrogen Sulfide Productions)
2023 NOV 13 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Life Science Daily -- A new study on fermentation research is now
Article Description
Since a large amount of sewage sludge (WSS) is generated daily, exploring effective methods for utilizing WSS is necessary. Although a photo-fermentation system sometimes alters the characteristics of microbial functions, there have been no attempts to perform photo-fermentation using WSS, which is regularly treated via dark fermentation. In this study, the effect of photo-fermentation (photo-irradiation) on anaerobic digestion using WSS was revealed. Photo-irradiation during the anaerobic digestion of WSS significantly reduced the amount of methane and hydrogen sulfide. Methane production was also reduced 5.6-fold at 13 days under light conditions, whereas hydrogen sulfide was consumed almost completely at 6 days. However, it was shown that the activity of sulfate-reducing bacteria in WSS under light treatment increased. Photo-irradiation also stimulated the growth of green sulfur bacteria and induced anoxygenic photosynthesis, via which process the fermented samples turned green in a manner that was correlated with their consumption of hydrogen sulfide. The production of organic acids was lowered in the samples that were irradiated using light. Finally, dark/light switching fermentation was only able to reduce hydrogen sulfide while methane production remained the same. The amounts of methane and hydrogen sulfide were 35 mmol/g VS, and they were undetected at 58 days in photo-irradiated samples compared to the control samples that produced 37 mmol/g VS of methane and 15 ppm/g VS of hydrogen sulfide.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know