Software Defined Networking Flow Table Management of OpenFlow Switches Performance and Security Challenges: A Survey
Future Internet, ISSN: 1999-5903, Vol: 12, Issue: 9
2020
- 83Citations
- 138Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Software defined networking (SDN) is an emerging network paradigm that decouples the control plane from the data plane. The data plane is composed of forwarding elements called switches and the control plane is composed of controllers. SDN is gaining popularity from industry and academics due to its advantages such as centralized, flexible, and programmable network management. The increasing number of traffics due to the proliferation of the Internet of Thing (IoT) devices may result in two problems: (1) increased processing load of the controller, and (2) insufficient space in the switches’ flow table to accommodate the flow entries. These problems may cause undesired network behavior and unstable network performance, especially in large-scale networks. Many solutions have been proposed to improve the management of the flow table, reducing controller processing load, and mitigating security threats and vulnerabilities on the controllers and switches. This paper provides comprehensive surveys of existing schemes to ensure SDN meets the quality of service (QoS) demands of various applications and cloud services. Finally, potential future research directions are identified and discussed such as management of flow table using machine learning.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know