Study on the Prediction Model of Coal Spontaneous Combustion Limit Parameters and Its Application
Fire, ISSN: 2571-6255, Vol: 6, Issue: 10
2023
- 7Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The limit parameters of coal spontaneous combustion are important indicators for determining the risk of spontaneous combustion in coal seams. By analyzing the limit parameters of coal spontaneous combustion, the dangerous areas of coal spontaneous combustion can be determined, and corresponding measures can be taken to avoid the occurrence of fires. In order to accurately predict the limit parameters of coal spontaneous combustion, the prediction model of coal spontaneous combustion limit parameters based on GA-SVM was constructed by coupling genetic algorithm (GA) and support vector machine (SVM). Meanwhile, the GA and particle swarm optimization algorithm (PSO) were used to optimize the back propagation neural network (BPNN) to construct the GA-BPNN and PSO-BPNN prediction models, respectively. To predict the intensity of air leakage of the upper limit of coal spontaneous combustion in the goaf, the prediction results of the models were compared and analyzed using MAE, MAPE, RMSE, and R as the prediction performance evaluation indexes. The results show that the MAE of the GA-SVM model, the PSO-BPNN model, and the GA-BPNN model are 0.0960, 0.1086, and 0.1309, respectively; the MAPE is 2.46%, 3.11%, and 3.69%, respectively; the RMSE is 0.1180, 0.1789, and 0.2212, respectively; and the R is 0.9921, 0.9818, and 0.9722. The prediction results of the GA-SVM model are the most optimal in four evaluation indexes, followed by the PSO-BPNN and the GA-BPNN models. Applying each model to the prediction of minimum residual coal thickness in the goaf of a coal mine in Shanxi, the GA-SVM model has higher accuracy, which further verifies the universality and stability of the model and its suitability for the prediction of coal spontaneous combustion limit parameters.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know