Estimation of minced pork microbiological spoilage through Fourier transform infrared and visible spectroscopy and multispectral vision technology
Foods, ISSN: 2304-8158, Vol: 8, Issue: 7
2019
- 23Citations
- 52Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations23
- Citation Indexes23
- 23
- CrossRef17
- Captures52
- Readers52
- 52
- Mentions1
- Blog Mentions1
- 1
Most Recent Blog
Foods, Vol. 8, Pages 238: Estimation of Minced Pork Microbiological Spoilage through Fourier Transform Infrared and Visible Spectroscopy and Multispectral Vision Technology
Foods, Vol. 8, Pages 238: Estimation of Minced Pork Microbiological Spoilage through Fourier Transform Infrared and Visible Spectroscopy and Multispectral Vision Technology Foods doi: 10.3390/foods8070238
Article Description
Spectroscopic and imaging methods coupled with multivariate data analysis have been increasingly studied for the assessment of food quality. The objective of this work was the estimation of microbiological quality of minced pork using non-invasive spectroscopy-based sensors. For this purpose, minced pork patties were stored aerobically at different isothermal (4, 8, and 12 C) and dynamic temperature conditions, and at regular time intervals duplicate samples were subjected to (i) microbiological analyses, (ii) Fourier transform infrared (FTIR) and visible (VIS) spectroscopy measurements, and (iii) multispectral image (MSI) acquisition. Partial-least squares regression models were trained and externally validated using the microbiological/spectral data collected at the isothermal and dynamic temperature storage conditions, respectively. The root mean squared error (RMSE, log CFU/g) for the prediction of the test (external validation) dataset for the FTIR, MSI, and VIS models was 0.915, 1.173, and 1.034, respectively, while the corresponding values of the coefficient of determination (R) were 0.834, 0.727, and 0.788. Overall, all three tested sensors exhibited a considerable potential for the prediction of the microbiological quality of minced pork.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know