Tempered fractional equations for quantum transport in mesoscopic one-dimensional systems with fractal disorder
Fractal and Fractional, ISSN: 2504-3110, Vol: 3, Issue: 4, Page: 1-11
2019
- 13Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
New aspects of electron transport in quantum wires with Lévy-type disorder are described. We study the weak scattering and the incoherent sequential tunneling in one-dimensional quantum systems characterized by a tempered Lévy stable distribution of spacing between scatterers or tunneling barriers. The generalized Dorokhov–Mello–Pereyra–Kumar equation contains the tempered fractional derivative on wire length. The solution describes the evolution from the anomalous conductance distribution to the Dorokhov function for a long wire. For sequential tunneling, average values and relative fluctuations of conductance and resistance are calculated for different parameters of spatial distributions. A tempered Lévy stable distribution of spacing between barriers leads to a transition in conductance scaling.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know