FPGA Realization of a Fractional-Order Model of Universal Memory Elements
Fractal and Fractional, ISSN: 2504-3110, Vol: 8, Issue: 10
2024
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- Blog Mentions1
- Blog1
Most Recent Blog
Fractal Fract, Vol. 8, Pages 605: FPGA Realization of a Fractional-Order Model of Universal Memory Elements
Fractal Fract, Vol. 8, Pages 605: FPGA Realization of a Fractional-Order Model of Universal Memory Elements Fractal and Fractional doi: 10.3390/fractalfract8100605 Authors: Opeyemi-Micheal Afolabi Vincent-Ademola
Article Description
This paper addresses critical gaps in the digital implementations of fractional-order memelement emulators, particularly given the challenges associated with the development of solid-state devices using nanomaterials. Despite the potentials of these devices for industrial applications, the digital implementation of fractional-order models has received limited attention. This research contributes to bridging this knowledge gap by presenting the FPGA realization of the memelements based on a universal voltage-controlled circuit topology. The digital emulators successfully exhibit the pinched hysteresis behaviors of memristors, memcapacitors, and meminductors, showing the retention of historical states of their constitutive electronic variables. Additionally, we analyze the impact of the fractional-order parameters and excitation frequencies on the behaviors of the memelements. The design methodology involves using Xilinx System Generator for DSP blocks to lay out the architectures of the emulators, with synthesis and gate-level implementation performed on the Xilinx Artix-7 AC701 Evaluation kit, where resource utilization on hardware accounts for about (Formula presented.) of available hardware resources. Further hardware analysis shows successful timing validation and low power consumption across all designs, with an average on-chip power of 0.23 Watts and average worst negative slack of 0.6 ns against a 5 ns constraint. We validate these results with Matlab 2020b simulations, which aligns with the hardware models.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know