Strategy to explore Magnetized Cosmic Web with forthcoming large surveys of rotation measure
Galaxies, ISSN: 2075-4434, Vol: 6, Issue: 4
2018
- 2Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The warm-hot intergalactic medium (WHIM) is a candidate for the missing baryons in the Universe. If the WHIM is permeated with the intergalactic magnetic field (IGMF), the Faraday rotation measure (RM) of the WHIM is imprinted in linearly-polarized emission from extragalactic objects. In this article, we discuss strategies to explore the WHIM's RM from forthcoming radio broadband and wide-field polarization sky surveys. There will be two observational breakthroughs in the coming decades; the RM grid and Faraday tomography. They will allow us to find ideal RM sources for the study of the IGMF and give us unique information of the WHIM along the line of sight.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know