Direct Inference of Base-Pairing Probabilities with Neural Networks Improves Prediction of RNA Secondary Structures with Pseudoknots
Genes, ISSN: 2073-4425, Vol: 13, Issue: 11
2022
- 3Citations
- 14Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- CrossRef2
- Captures14
- Readers14
- 14
- Mentions2
- Blog Mentions1
- Blog1
- News Mentions1
- 1
Most Recent News
Keio University Reports Findings in Engineering (Direct Inference of Base-Pairing Probabilities with Neural Networks Improves Prediction of RNA Secondary Structures with Pseudoknots)
2022 DEC 01 (NewsRx) -- By a News Reporter-Staff News Editor at Network Daily News -- New research on Engineering is the subject of a
Article Description
Existing approaches to predicting RNA secondary structures depend on how the secondary structure is decomposed into substructures, that is, the architecture, to define their parameter space. However, architecture dependency has not been sufficiently investigated, especially for pseudoknotted secondary structures. In this study, we propose a novel algorithm for directly inferring base-pairing probabilities with neural networks that do not depend on the architecture of RNA secondary structures, and then implement this approach using two maximum expected accuracy (MEA)-based decoding algorithms: Nussinov-style decoding for pseudoknot-free structures and IPknot-style decoding for pseudoknotted structures. To train the neural networks connected to each base pair, we adopt a max-margin framework, called structured support vector machines (SSVM), as the output layer. Our benchmarks for predicting RNA secondary structures with and without pseudoknots show that our algorithm outperforms existing methods in prediction accuracy.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know