Composition and structure of zircon from hydrothermal uranium occurrences of the Litsa ore area (Kola region, Russia)
Geosciences (Switzerland), ISSN: 2076-3263, Vol: 10, Issue: 8, Page: 1-14
2020
- 5Citations
- 27Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Zircon grains from various metagranitoids (plagio-and monzo-granites, gneisses, metasomatic rocks, and pegmatoid veins) from the Skal’noe and Dikoe sites of the Litsa uranium ore area (Kola Region, Russia) were studied in order to reconstruct the sequence and timing of events in the area and to observe effects of hydrothermal process related to uranium mineralization on structure and composition of zircon. Individual zircon grains were studied by means of laser ablation inductively coupled plasma mass spectrometry (LA–ICPMS), ion microprobe and Raman spectroscopy. Isotopic LA–ICPMS data for the Skal’noye and Dikoe ore occurrences suggest the following age sequence of events in the area: intrusion of plagiogranites—2829 ± 12 Ma, formation of magmatic protolith of gneisses—2781 ± 17 Ma, metamorphism of plagiogranites—2636 ± 34 Ma; intrusion of monzogranites and pegmatoid veins—2549–2526 Ma, hydrothermal event with uranium input—2276 ± 21 Ma, last metamorphism of plagio-and monzo-granites—1892–1696 Ma. Ore-bearing rocks in the area are pegmatoid veins and quartz–feldspar metasomatites which contain uraninite. During a 2.3 Ga hydrothermal process, newly formed zircon rims grew simultaneously with the precipitation of uraninite in the veins and metasomatites. These rims are characterized by high U and rare earth elements (REE) contents (up to 6560 and 8760 ppm, respectively), dark cathodoluminescence, low Th-U ratios (0.1–0.007) and a flat LREE-enriched pattern, in some cases inherited from minerals, dissolved during a hydrothermal event (magmatic plagioclase and probably monazite). Hydrothermal zircon rims grew with partial dissolution of the magmatic zircon, as evidenced by the rounded and curved shapes of zircon cores. The degree of alteration caused by hydrothermal events depends on the uranium content in the pre-existing zircon. The effects of zircon alteration and newly formed zircon composition reflect the redistribution of uranium in rocks.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know