Estimation of citrus maturity with fluorescence spectroscopy using deep learning
Horticulturae, ISSN: 2311-7524, Vol: 5, Issue: 1
2019
- 59Citations
- 81Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Horticulturae, Vol. 5, Pages 2: Estimation of Citrus Maturity with Florescence Spectroscopy Using Deep Learning
Horticulturae, Vol. 5, Pages 2: Estimation of Citrus Maturity with Florescence Spectroscopy Using Deep Learning Horticulturae doi: 10.3390/horticulturae5010002 Authors: Kenta Itakura Yoshito Saito Tetsuhito Suzuki
Article Description
To produce high-quality citrus, the harvest time of citrus should be determined by considering its maturity. To evaluate citrus maturity, the Brix/acid ratio, which is the ratio of sugar content or soluble solids content to acid content, is one of the most commonly used indicators of fruit maturity. To estimate the Brix/acid ratio, fluorescence spectroscopy, which is a rapid, sensitive, and cheap technique, was adopted. Each citrus peel was extracted, and its fluorescence value was measured. Then, the fluorescent spectrum was analyzed using a convolutional neural network (CNN). In fluorescence spectroscopy, a matrix called excitation and emission matrix (EEM) can be obtained, in which each fluorescence intensity was recorded at each excitation and emission wavelength. Then, by regarding the EEM as an image, the Brix/acid ratio of juice from the flesh was estimated via performing a regression with a CNN (CNN regression). As a result, the Brix/acid ratio absolute error was estimated to be 2.48, which is considerably better than the values obtained by the other methods in previous studies. Hyperparameters, such as depth of layers, learning rate, and the number of filters used for this estimation, could be observed using Bayesian optimization, and the optimization contributed to the high accuracy.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know