Assessment of the impact of climate change on daily extreme peak and low flows of Zenne basin in Belgium
Hydrology, ISSN: 2306-5338, Vol: 5, Issue: 3
2018
- 17Citations
- 51Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Integrating hydrology with climate is essential for a better understanding of the impact of present and future climate on hydrological extremes, which may cause frequent flooding, drought, and shortage of water supply. This study assessed the impact of future climate change on the hydrological extremes (peak and low flows) of the Zenne river basin (Belgium). The objectives were to assess how climate change impacts basin-wide extreme flows and to provide a detailed overview of the impacts of four future climate change scenarios compared to the control (baseline) values. The scenarios are high (wet) summer (projects a future with high storm rain in summer), high (wet) winter (predicts a future with high rainfall in winter), mean (considers a future with intermediate climate conditions), and low (dry) (projects a future with low rainfall during winter and summer). These scenarios were projected by using the Climate Change Impact on HYDRological extremes perturbation tool (CCI-HYDR), which was (primarily) developed for Belgium to study climate change. We used the Soil andWater Assessment Tool (SWAT) model to predict the impact of climate change on hydrological extremes by the 2050s (2036-2065) and the 2080s (2066-2095) by perturbing the historical daily data of 1961-1990. We found that the four climate change scenarios show quite different impacts on extreme peak and low flows. The extreme peak flows are expected to increase by as much as 109% under the wet summer scenario, which could increase adverse effects, such as flooding and disturbance of the riverine ecosystem functioning of the river. On the other hand, the low (dry) scenario is projected to cause a significant decrease in both daily extreme peak and low flows, by as much as 169% when compared to the control values, which would cause problems, such as droughts, reduction in agricultural crop productivity, and increase in drinking water and other water use demands. More importantly, larger negative changes in low flows are predicted in the downstream part of the basin where a higher groundwater contribution is expected, indicating the sensitivity of a basin to the impact of climate change may vary spatially and depend on basin characteristic. Overall, an amplified, as well as an earlier, occurrence of hydrological droughts is expected towards the end of this century, suggesting that water resources managers, planners, and decision makers should prepare appropriate mitigation measures for climate change for the Zenne and similar basins.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know