Application of cardio-forecasting for evaluation of human—operator performance
International Journal of Environmental Research and Public Health, ISSN: 1660-4601, Vol: 17, Issue: 1
2020
- 1Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The paper presents the results of the development of the cardio-forecasting technology, which introduces a new method to monitor the state of human-operator, which is characteristic for the given production conditions and for individual operators, to predict the moment of exhaustion of his/her working capacity. The work aims to demonstrate the unique, distinctive features of the cardio-forecasting technology for predicting an individual limit of his/her working capacity for each person. A unique methodology for predicting individually for each person the moment when he/she reaches the limit of his/her working capacity is based on a spectral analysis of a human phonocardiogram in order to isolate the frequency component located at the heart contraction frequency. The trend of the amplitude of this component is approximated by its model; consequently, the coefficients of the trend model are determined. They include the operator’s operating time until his/her working capacity is exhausted. A methodology for predicting the moment when he/she reaches the limit of his/her working capacity for each person individually and assessment based on this degree of criticality of their condition will be realized as a software application for smartphones using the Android operating system.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know