Functional area recognition and use-intensity analysis based on multi-source data: A case study of Jinan, China
ISPRS International Journal of Geo-Information, ISSN: 2220-9964, Vol: 10, Issue: 10
2021
- 7Citations
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper proposes a GIS-based field model for hot-spot extraction based on POI data and analyzes the use intensity of functional areas by using Tencent location data to identify and describe the morphological characteristics and dynamic use intensity of facilities in urban functional areas. Taking the four districts of Jinan City Center as an example, we used the generalized symmetric structure spectrum and digital field-based hierarchical geo-information Tupu to extract facility hot spots. Tencent location data were then applied to quantify differences in the use intensity of functional areas between workday and weekend, as well as between daytime and nighttime. Finally, refined research on functional areas was realized from a dynamic point of view. Results showed that (1) the generalized symmetric structure spectrum and digital field-based hierarchical geo-information Tupu can identify and express the characteristics of the spatial distribution and hierarchical structures of urban facility hot spots at the horizontal and vertical levels, respectively; (2) overall, the distribution of all types of functional areas presents the characteristics of “circular structures,” which form a spatial pattern of “multi-center” groups and “single/mixed” functional areas; (3) aside from residential facilities, green space and square land facilities have the highest use intensity; this finding highlights the tourism characteristics of Jinan. Low-use intensity areas are distributed at the periphery of the four districts, while high-use intensity areas, the functional type of which is mainly business facilities, are mainly distributed around the urban area. These results are helpful to the development strategy of the city’s efforts to adapt to economic change and provide a scientific basis for the functional orientation of Jinan City.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know