A Comprehensive Spatio-Temporal Model for Subway Passenger Flow Prediction
ISPRS International Journal of Geo-Information, ISSN: 2220-9964, Vol: 11, Issue: 6
2022
- 12Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Accurate subway passenger flow prediction is crucial to operation management and line scheduling. It can also promote the construction of intelligent transportation systems (ITS). Due to the complex spatial features and time-varying traffic patterns of subway networks, the prediction task is still challenging. Thus, a hybrid neural network model, GCTN (graph convolutional and comprehensive temporal neural network), is proposed. The model combines the Transformer network and long short-term memory (LSTM) network to capture the global and local temporal de-pendency. Besides, it uses a graph convolutional network (GCN) to capture the spatial features of the subway network. For the sake of the stability and accuracy for long-term passenger flow predic-tion, we enhance the influence of the station itself and the global station and combine the convolu-tional neural networks (CNN) and Transformer. The model is verified by the passenger flow data of the Shanghai Subway. Compared with some typical data-driven methods, the results show that the proposed model improves the prediction accuracy in different time intervals and exhibits supe-riority in prediction stability and robustness. Besides, the model has a better performance in the peak value and the period when passenger flow changes quickly.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know