A Localized Evaluation of Surface Water Quality Using GIS-Based Water Quality Index along Satpara Watershed Skardu Baltistan, Pakistan
ISPRS International Journal of Geo-Information, ISSN: 2220-9964, Vol: 13, Issue: 11
2024
- 1Citations
- 1Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
IJGI, Vol. 13, Pages 393: A Localized Evaluation of Surface Water Quality Using GIS-Based Water Quality Index along Satpara Watershed Skardu Baltistan, Pakistan
IJGI, Vol. 13, Pages 393: A Localized Evaluation of Surface Water Quality Using GIS-Based Water Quality Index along Satpara Watershed Skardu Baltistan, Pakistan ISPRS International
Article Description
Surface water quality in Skardu, Gilgit-Baltistan, Pakistan, is of immense importance because of the city’s dependence on these resources for domestic uses, agriculture, and drinking water. The water quality index (WQI) was integrated with the Geographic Information System (GIS) to spatially envision and examine water quality data to facilitate the identification of pollution hotspots, trend analysis, and knowledge-based decision-making for effective water resource management. This study aims to evaluate the physiochemical and bacteriological parameters of the Satpara watershed and to provide the spatial distribution of these parameters. This study endeavors to achieve Sustainable Development Goal 6 (SDG 6) by identifying localities with excellent and unfit water for drinking, sanitation, and hygiene. A total of fifty-one surface water samples were collected from various parts of the Satpara watershed during the fall season of 2023. Well-established laboratory techniques were used to investigate water for parameters like Electrical Conductivity (EC), pH, turbidity, total dissolved solids (TDSs), major cations ((Formula presented.), (Formula presented.), (Formula presented.), (Formula presented.)), major anions ((Formula presented.), (Formula presented.), (Formula presented.), (Formula presented.)), and bacteriological contaminants (E. coli). Spatial distribution maps of all these parameters were created using the Inverse Distance Weighted (IDW) technique in a GIS environment. A significant variation in the quality of water was observed along the study area. The level of Escherichia coli (E. coli) contamination is above the permissible limit at various locations along the watershed, making water unsafe for direct human consumption in these areas. Some regions showed low TDS values, which could adversely affect human health and agricultural yield. From the WQI valuation, 58.82% of the collected samples were “Poor”, 31.8% were “Very poor” and 9.8% were found to be “Unfit for drinking”. The research findings emphasize the pressing need for consistent monitoring and adoption of water management strategies in Skardu City to warrant sustainable soil and water use. The spatial maps generated for various parameters and the water quality index WQI offer critical insights for targeted intercessions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know