PlumX Metrics
Embed PlumX Metrics

Maize wrky transcription factor zmwrky106 confers drought and heat tolerance in transgenic plants

International Journal of Molecular Sciences, ISSN: 1422-0067, Vol: 19, Issue: 10
2018
  • 193
    Citations
  • 0
    Usage
  • 118
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Most Recent Blog

IJMS, Vol. 19, Pages 3046: Maize WRKY Transcription Factor ZmWRKY106 Confers Drought and Heat Tolerance in Transgenic Plants

IJMS, Vol. 19, Pages 3046: Maize WRKY Transcription Factor ZmWRKY106 Confers Drought and Heat Tolerance in Transgenic Plants International Journal of Molecular Sciences doi: 10.3390/ijms19103046

Article Description

WRKY transcription factors constitute one of the largest transcription factor families in plants, and play crucial roles in plant growth and development, defense regulation and stress responses. However, knowledge about this family in maize is limited. In the present study, we identified a drought-induced WRKY gene, ZmWRKY106, based on the maize drought de novo transcriptome sequencing data. ZmWRKY106 was identified as part of the WRKYII group, and a phylogenetic tree analysis showed that ZmWRKY106 was closer to OsWRKY13. The subcellular localization of ZmWRKY106 was only observed in the nucleus. The promoter region of ZmWRKY106 included the C-repeat/dehydration responsive element (DRE), low-temperature responsive element (LTR), MBS, and TCA-elements, which possibly participate in drought, cold, and salicylic acid (SA) stress responses. The expression of ZmWRKY106 was induced significantly by drought, high temperature, and exogenous abscisic acid (ABA), but was weakly induced by salt. Overexpression of ZmWRKY106 improved the tolerance to drought and heat in transgenic Arabidopsis by regulating stress-related genes through the ABA-signaling pathway, and the reactive oxygen species (ROS) content in transgenic lines was reduced by enhancing the activities of superoxide dismutase (SOD), peroxide dismutase (POD), and catalase (CAT) under drought stress. This suggested that ZmWRKY106 was involved in multiple abiotic stress response pathways and acted as a positive factor under drought and heat stress.

Bibliographic Details

Wang, Chang-Tao; Ru, Jing-Na; Liu, Yong-Wei; Li, Meng; Zhao, Dan; Yang, Jun-Feng; Fu, Jin-Dong; Xu, Zhao-Shi

MDPI AG

Chemical Engineering; Biochemistry, Genetics and Molecular Biology; Chemistry; Computer Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know