OsWRKY114 Is a Player in Rice Immunity against Fusarium fujikuroi
International Journal of Molecular Sciences, ISSN: 1422-0067, Vol: 24, Issue: 7
2023
- 4Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Every year, invasive pathogens cause significant damage to crops. Thus, identifying genes conferring broad-spectrum resistance to invading pathogens is critical for plant breeding. We previously demonstrated that OsWRKY114 contributes to rice (Oryza sativa L.) immunity against the bacterial pathovar Xanthomonas oryzae pv. oryzae (Xoo). However, it is not known whether OsWRKY114 is involved in defense responses to other pathogens. In this study, we revealed that OsWRKY114 enhances innate immunity in rice against the fungal pathogen Fusarium fujikuroi, which is the causal agent of bakanae disease. Transcript levels of various gibberellin-related genes that are required for plant susceptibility to F. fujikuroi were reduced in rice plants overexpressing OsWRKY114. Analysis of disease symptoms revealed increased innate immunity against F. fujikuroi in OsWRKY114-overexpressing rice plants. Moreover, the expression levels of OsJAZ genes, which encode negative regulators of jasmonic acid signaling that confer immunity against F. fujikuroi, were reduced in OsWRKY114-overexpressing rice plants. These results indicate that OsWRKY114 confers broad-spectrum resistance not only to Xoo but also to F. fujikuroi. Our findings provide a basis for developing strategies to mitigate pathogen attack and improve crop resilience to biotic stress.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know