Astrocytes as Neuroimmunocytes in Alzheimer’s Disease: A Biochemical Tool in the Neuron–Glia Crosstalk along the Pathogenetic Pathways
International Journal of Molecular Sciences, ISSN: 1422-0067, Vol: 24, Issue: 18
2023
- 7Citations
- 28Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- Captures28
- Readers28
- 28
- Mentions2
- News Mentions2
- 2
Most Recent News
Research from University of Pisa Broadens Understanding of Alzheimer Disease (Astrocytes as Neuroimmunocytes in Alzheimer's Disease: A Biochemical Tool in the Neuron-Glia Crosstalk along the Pathogenetic Pathways)
2023 OCT 11 (NewsRx) -- By a News Reporter-Staff News Editor at Pain & Central Nervous System Daily News -- Current study results on Alzheimer
Review Description
This work aimed at assessing Alzheimer’s disease (AD) pathogenesis through the investigation of the astrocytic role to transduce the load of amyloid-beta (Aβ) into neuronal death. The backbone of this review is focused on the deepening of the molecular pathways eliciting the activation of astrocytes crucial phenomena in the understanding of AD as an autoimmune pathology. The complex relations among astrocytes, Aβ and tau, together with the role played by the tripartite synapsis are discussed. A review of studies published from 1979 to 2023 on Scopus, PubMed and Google Scholar databases was conducted. The selected papers focused not only on the morphological and metabolic characteristics of astrocytes, but also on the latest notions about their multifunctional involvement in AD pathogenesis. Astrocytes participate in crucial pathways, including pruning and sprouting, by which the AD neurodegeneration evolves from an aggregopathy to neuroinflammation, loss of synapses and neuronal death. A1 astrocytes stimulate the production of pro-inflammatory molecules which have been correlated with the progression of AD cognitive impairment. Further research is needed to “hold back” the A1 polarization and, thus, to slow the worsening of the disease. AD clinical expression is the result of dysfunctional neuronal interactions, but this is only the end of a process involving a plurality of protagonists. One of these is the astrocyte, whose importance this work intends to put under the spotlight in the AD scenario, reflecting the multifaceted nature of this disease in the functional versatility of this glial population.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know