Heading Date 3a Stimulates Tiller Bud Outgrowth in Oryza sativa L. through Strigolactone Signaling Pathway
International Journal of Molecular Sciences, ISSN: 1422-0067, Vol: 25, Issue: 19
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Heading date 3a (Hd3a, a FLOWERING LOCUS T (FT) ortholog from rice) is well known for its important role in rice (Oryza sativa L.), controlling floral transition under short-day (SD) conditions. Although the effect of Hd3a on promoting branching has been found, the underlying mechanism remains largely unknown. In this report, we overexpressed an Hd3a and BirAG (encoding a biotin ligase) fusion gene in rice, and found that early flowering and tiller bud outgrowth was promoted in BHd3aOE transgenic plants. On the contrary, knockout of Hd3a delayed flowering and tiller bud outgrowth. By using the BioID method, we identified multiple Hd3a proximal proteins. Among them, D14, D53, TPR1, TPR2, and TPRs are central components of the strigolactone signaling pathway, which has an inhibitory effect on rice tillering. The interaction between Hd3a, on the one hand, and D14 and D53 was further confirmed by the bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H), and co-immunoprecipitation (Co-IP) methods. We also found that Hd3a prevented the degradation of D53 induced by rac-GR24 (a strigolactone analog) in rice protoplasts. RT-qPCR assay showed that the expression levels of genes involved in strigolactone biosynthesis and signal transduction were altered significantly between WT and Hd3a overexpression (Hd3aOE) or mutant (hd3a) plants. OsFC1, a downstream target of the strigolactone signaling transduction pathway in controlling rice tillering, was downregulated significantly in Hd3aOE plants, whereas it was upregulated in hd3a lines. Collectively, these results indicate that Hd3a promotes tiller bud outgrowth in rice by attenuating the negative effect of strigolactone signaling on tillering and highlight a novel molecular network regulating rice tiller outgrowth by Hd3a.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know