Inflammatory Stimulation Upregulates the Receptor Transporter Protein 4 (RTP4) in SIM-A9 Microglial Cells
International Journal of Molecular Sciences, ISSN: 1422-0067, Vol: 25, Issue: 24
2024
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions2
- Blog Mentions1
- Blog1
- News Mentions1
- 1
Most Recent News
Research on Interferons Published by a Researcher at Juntendo University [Inflammatory Stimulation Upregulates the Receptor Transporter Protein 4 (RTP4) in SIM-A9 Microglial Cells]
2025 JAN 07 (NewsRx) -- By a News Reporter-Staff News Editor at Health & Medicine Daily -- Researchers detail new data in interferons. According to
Article Description
The receptor transporter protein 4 (RTP4) is a receptor chaperone protein that targets class A G-protein coupled receptor (GPCR)s. Recently, it has been found to play a role in peripheral inflammatory regulation, as one of the interferon-stimulated genes (ISGs). However, the detailed role of RTP4 in response to inflammatory stress in the central nervous system has not yet been fully understood. While we have previously examined the role of RTP4 in the brain, particularly in neuronal cells, this study focuses on its role in microglial cells, immunoreactive cells in the brain that are involved in inflammation. For this, we examined the changes in the RTP4 levels in the microglial cells after exposure to inflammatory stress. We found that lipopolysaccharide (LPS) treatment (0.1~1 µg/mL, 24 h) significantly upregulated the RTP4 mRNA levels in the microglial cell line, SIM-A9. Furthermore, the interferon (IFN)-β mRNA levels and extracellular levels of IFN-β were also increased by LPS treatment. This upregulation was reversed by treatment with neutralizing antibodies targeting either the interferon receptor (IFNR) or toll-like receptor 4 (TLR4), and with a TLR4 selective inhibitor, or a Janus kinase (JAK) inhibitor. On the other hand, the mitogen-activated protein kinase kinase (MEK) inhibitor, U0126, significantly enhanced the increase in RTP4 mRNA following LPS treatment, whereas the PKC inhibitor, calphostin C, had no effect. These findings suggest that in microglial cells, LPS-induced inflammatory stress activates TLR4, leading to the production of type I IFN, the activation of IFN receptor and JAK, and finally, the induction of RTP4 gene expression. Based on these results, we speculate that RTP4 functions as an inflammation-responsive molecule in the brain. However, further research is needed to fully understand its role.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know