A Comprehensive Taxonomy for Prediction Models in Software Engineering
Information (Switzerland), ISSN: 2078-2489, Vol: 14, Issue: 2
2023
- 2Citations
- 12Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Applying prediction models to software engineering is an interesting research area. There have been many related studies which leverage prediction models to achieve good performance in various software engineering tasks. With more and more researches in software engineering leverage prediction models, there is a need to sort out related studies, aiming to summarize which software engineering tasks prediction models can apply to and how to better leverage prediction models in these tasks. This article conducts a comprehensive taxonomy on prediction models applied to software engineering. We review 136 papers from top conference proceedings and journals in the last decade and summarize 11 research topics prediction models can apply to. Based on the papers, we conclude several big challenges and directions. We believe that the comprehensive taxonomy will help us understand the research area deeper and infer several useful and practical implications.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know