Influence of Novel Beam Shapes on Laser-Based Processing of High-Strength Aluminium Alloys on the Basis of EN AW-5083 Single Weld Tracks
Journal of Manufacturing and Materials Processing, ISSN: 2504-4494, Vol: 7, Issue: 3
2023
- 16Citations
- 25Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
JMMP, Vol. 7, Pages 93: Influence of Novel Beam Shapes on Laser-Based Processing of High-Strength Aluminium Alloys on the Basis of EN AW-5083 Single Weld Tracks
JMMP, Vol. 7, Pages 93: Influence of Novel Beam Shapes on Laser-Based Processing of High-Strength Aluminium Alloys on the Basis of EN AW-5083 Single Weld
Most Recent News
Friedrich-Alexander-University Erlangen-Nurnberg (FAU) Researcher Focuses on Manufacturing and Materials Processing (Influence of Novel Beam Shapes on Laser-Based Processing of High-Strength Aluminium Alloys on the Basis of EN AW-5083 Single ...)
2023 MAY 31 (NewsRx) -- By a News Reporter-Staff News Editor at Chemicals & Chemistry Daily Daily -- New research on manufacturing and materials processing
Article Description
The commonly used Gaussian intensity distribution during the laser-based processing of metals can negatively affect melt pool stability, which might lead to defects such as porosity, hot cracking, or poor surface quality. Hot cracking is a major factor in limiting production rates of high-strength aluminium alloys in laser-based processes such as welding or the powder bed fusion of metals (PBF-LB/M). Going away from a Gaussian intensity distribution to ring-shaped profiles allows for a more even heat distribution during processing, resulting in more stable melt pools and reduced defect formations. Therefore, the aim of this study is to investigate the influence of different laser beam profiles on the processing of high-strength aluminium alloys by using a multicore fiber laser, allowing for in-house beam shaping. Single weld tracks on the aluminium alloy EN AW-5083 are produced with varying laser powers and weld speeds, as well as different beam profiles, ranging from Gaussian intensity distribution to point/ring profiles. The molten cross sections are analyzed regarding their geometry and defects, and the surface roughness of the weld tracks is measured. By using point/ring beam profiles, the processing window can be significantly increased. Hot cracking is considerably reduced for weld speeds of up to 1000 mm/s compared to the Gaussian beam profile. Furthermore, the melt pool width and depth are more stable, with varying parameters for the point/ring profiles, while the Gaussian beam tends to keyhole formation at higher beam powers. Finally, a strong decrease in surface roughness for the point/ring profiles, accompanied by a significantly reduced humping effect, starting even at lower beam powers of 200 W, can be observed. Therefore, these results show the potential of beam shaping for further applications in laser-based processing of high-strength aluminium alloys.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know