Human Error Probability Assessment for LNG Bunkering Based on Fuzzy Bayesian Network-CREAM Model
Journal of Marine Science and Engineering, ISSN: 2077-1312, Vol: 10, Issue: 3
2022
- 29Citations
- 43Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
JMSE, Vol. 10, Pages 333: Human Error Probability Assessment for LNG Bunkering Based on Fuzzy Bayesian Network-CREAM Model
JMSE, Vol. 10, Pages 333: Human Error Probability Assessment for LNG Bunkering Based on Fuzzy Bayesian Network-CREAM Model Journal of Marine Science and Engineering doi:
Article Description
Liquified natural gas (LNG) as a marine fuel has gained momentum as the maritime industry moves towards a sustainable future. Since unwanted LNG release may lead to severe consequences, performing quantitative risk assessment (QRA) for LNG bunkering operations has become mandatory according to some regulations. Human error is a main contributor to the risks, and the human error probabilities (HEPs) are essential for inclusion in a QRA. However, HEPs data are unavailable in the LNG bunkering industry so far. Therefore, this study attempts to infer HEPs through on-site safety philosophical factors (SPFs). The cognitive reliability and error analysis method (CREAM) was adopted as a basic model and modified to make it suitable for HEP assessment in LNG bunkering. Nine common performance condition (CPC) indicators were identified based on the fuzzy ranking of 23 SPF indicators (SPFIs). A Bayesian network (BN) was built to simulate the occurrence probabilities of different contextual control modes (COCOMs), and a conditional probability table (CPT) for the COCOM node with 19,683 possible combinations in the BN was developed according to the CREAM’s COCOM matrix. The prior probabilities of CPCs were evaluated using the fuzzy set theory (FST) based on data acquired from an online questionnaire survey. The results showed that the prior HEP for LNG bunkering is 0.009841. This value can be updated based on the re-evaluation of on-site SPFIs for a specific LNG bunkering project to capture the dynamics of HEP. The main innovation of this work is realizing the efficient quantification of HEP for LNG bunkering operations by using the proposed fuzzy BN-CREAM model.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know