PlumX Metrics
Embed PlumX Metrics

Empirical Failure Pressure Prediction Equations for Pipelines with Longitudinal Interacting Corrosion Defects Based on Artificial Neural Network

Journal of Marine Science and Engineering, ISSN: 2077-1312, Vol: 10, Issue: 6
2022
  • 9
    Citations
  • 0
    Usage
  • 14
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    9
    • Citation Indexes
      9
  • Captures
    14

Article Description

Conventional pipeline failure pressure assessment codes do not allow for failure pressure prediction of interacting defects subjected to combined loadings. Alternatively, numerical approaches may be used; however, they are computationally expensive. In this work, an analytical equation based on finite element analysis for the failure pressure prediction of API 5L X52, X65, and X80 corroded pipes with a longitudinal interacting corrosion defect subjected to combined loadings is proposed. An artificial neural network (ANN) trained with failure pressure obtained from finite element analysis (FEA) of API 5L X52, X65, and X80 pipes for varied defect spacings, depths and lengths, and axial compressive stress were used to develop the equation. Subsequently, a parametric study on the effects of the defect spacing, length, and depth, and axial compressive stress on the failure pressure of a corroded pipe with longitudinal interacting defects was performed to demonstrate a correlation between defect geometries and failure pressure of API 5L X52, X65, and X80 pipes, using the equation. The new equation predicted failure pressures for these pipe grades with a coefficient of determination (R) value of 0.9930 and an error range of −10.00% to 1.22% for normalized defect spacings of 0.00 to 3.00, normalized effective defect lengths of 0.00 to 2.95, normalized effective defect depths of 0.00 to 0.80, and normalized axial compressive stress of 0.00 to 0.80.

Bibliographic Details

Suria Devi Vijaya Kumar; Michael Lo; Saravanan Karuppanan; Mark Ovinis

MDPI AG

Engineering; Environmental Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know