Machine Learning and Financial Literacy: An Exploration of Factors Influencing Financial Knowledge in Italy
Journal of Risk and Financial Management, ISSN: 1911-8074, Vol: 14, Issue: 3
2021
- 17Citations
- 107Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In recent years, machine learning techniques have assumed an increasingly central role in many areas of research, from computer science to medicine, including finance. In the current study, we applied it to financial literacy to test its accuracy, compared to a standard parametric model, in the estimation of the main determinants of financial knowledge. Using recent data on financial literacy and inclusion among Italian adults, we empirically tested how tree-based machine learning methods, such as decision trees, random, forest and gradient boosting techniques, can be a valuable complement to standard models (generalized linear models) for the identification of the groups in the population in most need of improving their financial knowledge.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know