Coordinated PSO-ANFIS-Based 2 MPPT Control of Microgrid with Solar Photovoltaic and Battery Energy Storage System
Journal of Sensor and Actuator Networks, ISSN: 2224-2708, Vol: 12, Issue: 3
2023
- 8Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The microgrid is a group of smaller renewable energy sources (REs), which act in a coordinated manner to provide the required amount of active power and additional services when required. This article proposes coordinated power management for a microgrid with the integration of solar PV plants with maximum power point tracking (MPPT) to enhance power generation and conversion using a hybrid MPPT method based on particle swarm optimization-adaptive neuro-fuzzy inference system (PSO-ANFIS) to acquire rapid and maximum PV power along with battery energy storage control to maintain the stable voltage and frequency (V-f) of an isolated microgrid. In addition, it is proposed to provide active and reactive power (P-Q) regulation for the grid connected. The approach used provides more regulation due to the least root mean square error (RMSE), which improves photovoltaic (PV) potential extraction. The comparison results of the PSO-ANFIS and P&O controllers of the MPPT and the controller of the energy storage devices combined with the V-f (or P-Q) controller of the inverter all show effective coordination between the control systems. This is the most important need for contemporary microgrids, considering the potential of changing irradiance in the grid following mode, the grid forming mode under an island scenario, and back-to-grid synchronization. With the test model, the islanded and grid-islanded-grid connected modes are investigated separately. The results demonstrate conclusively that the proposed strategies are effective. To run the simulations, MATLAB and SimPowerSystems are utilized.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know