Service-Aware Hierarchical Fog–Cloud Resource Mappingfor e-Health with Enhanced-Kernel SVM
Journal of Sensor and Actuator Networks, ISSN: 2224-2708, Vol: 13, Issue: 1
2024
- 1Citations
- 1Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Fog–cloud-based hierarchical task-scheduling methods are embracing significant challenges to support e-Health applications due to the large number of users, high task diversity, and harsher service-level requirements. Addressing the challenges of fog–cloud integration, this paper proposes a new service/network-aware fog–cloud hierarchical resource-mapping scheme, which achieves optimized resource utilization efficiency and minimized latency for service-level critical tasks in e-Health applications. Concretely, we develop a service/network-aware task classification algorithm. We adopt support vector machine as a backbone with fast computational speed to support real-time task scheduling, and we develop a new kernel, fusing convolution, cross-correlation, and auto-correlation, to gain enhanced specificity and sensitivity. Based on task classification, we propose task priority assignment and resource-mapping algorithms, which aim to achieve minimized overall latency for critical tasks and improve resource utilization efficiency. Simulation results showcase that the proposed algorithm is able to achieve average execution times for critical/non-critical tasks of 0.23/0.50 ms in diverse networking setups, which surpass the benchmark scheme by 73.88%/52.01%, respectively.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know