Comparison of compaction alleviation methods on soil health and greenhouse gas emissions
Land, ISSN: 2073-445X, Vol: 10, Issue: 12
2021
- 9Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Soil compaction can occur due to trafficking by heavy equipment and be exacerbated by unfavourable conditions such as wet weather. Compaction can restrict crop growth and increase waterlogging, which can increase the production of the greenhouse gas nitrous oxide. Cultivation can be used to alleviate compaction, but this can have negative impacts on earthworm abundance and increase the production of the greenhouse gas carbon dioxide. In this study, a field was purposefully compacted using trafficking, then in a replicated plot experiment, ploughing, low disturbance subsoiling and the application of a mycorrhizal inoculant were compared as methods of compaction alleviation, over two years of cropping. These methods were compared in terms of bulk density, penetration resistance, crop yield, greenhouse gas emissions and earthworm abundance. Ploughing alleviated topsoil compaction, as measured by bulk density and penetrometer resistance, and increased the crop biomass in one year of the study, although no yield differences were seen. Earthworm abundance was reduced in both years in the cultivated plots, and carbon dioxide flux increased significantly, although this was not significant in summer months. Outside of the summer months, nitrous oxide production increased in the non-cultivated treatments, which was attributed to increased denitrifying activity under compacted conditions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know