Continuous Change Detection and Classification—Spectral Trajectory Breakpoint Recognition for Forest Monitoring
Land, ISSN: 2073-445X, Vol: 11, Issue: 4
2022
- 8Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Forest is one of the most important surface coverage types. Monitoring its dynamics is of great significance in global ecological environment monitoring and global carbon circulation research. Forest monitoring based on Landsat time-series stacks is a research hotspot, and continuous change detection is a novel approach to real-time change detection. Here, we present an approach, continuous change detection and classification-spectral trajectory breakpoint recognition, running on Google Earth Engine (GEE) for monitoring forest disturbance and forest long-term trends. We used this approach to monitor forest disturbance and the change in forest cover rate from 1987 to 2020 in Nanning City, China. The high-resolution Google Earth images are collected for the validation of forest disturbance. The classification accuracy of forest, non-forest, and water maps by using the optima classification features was 95.16%. For disturbance detection, the accuracy of our map was 86.4%, significantly higher than 60% of the global forest change product. Our approach can successfully generate high-accuracy classification maps at any time and detect the forest disturbance time on a monthly scale, accurately capturing the thinning cycle of plantations, which earlier studies failed to estimate. All the research work is integrated into GEE to promote the use of the approach on a global scale.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know