MitoTEMPOL Inhibits ROS-Induced Retinal Vascularization Pattern by Modulating Autophagy and Apoptosis in Rat-Injected Streptozotocin Model
Life, ISSN: 2075-1729, Vol: 12, Issue: 7
2022
- 2Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef2
- Captures6
- Readers6
Article Description
Diabetic retinopathy leads to retinal malfunction, blindness, and reduced quality of life in adult diabetes patients. The involvement of reactive oxygen species (ROS) regulation stimulated by high blood glucose levels opens the opportunity for ROS modulator agents such as MitoTEMPOL. This study aims to explore the effect of MitoTEMPOL on ROS balance that may be correlated with retinal vascularization pattern, autophagy, and apoptosis in a streptozotocin-induced rat model. Four groups of male Wistar rats (i.e., control, TEMPOL (100 mg/kg body weight [BW]), diabetic (streptozotocin, 50 mg/kg BW single dose), and diabetic + TEMPOL; n = 5 for each group) were used in the study. MitoTEMPOL was given for 5 weeks, followed by funduscopy, and gene and protein expression were explored from the rat’s retina. Streptozotocin injection decreased bodyweight and increased food and water intake, as well as fasting blood glucose. The results showed that MitoTEMPOL reduced retinal vascularization pattern and decreased superoxide dismutase gene expression and protein carbonyl, caspase 3, and caspase 9 protein levels. A modulation of autophagy in diabetes that was reversed in the diabetic + TEMPOL group was found. In conclusion, MitoTEMPOL modulation on autophagy and apoptosis contributes to its role as a potent antioxidant to prevent diabetic retinopathy by inhibiting ROS-induced retinal vascularization patterns.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know