A Contextual-Bandit-Based Approach for Informed Decision-Making in Clinical Trials
Life, ISSN: 2075-1729, Vol: 12, Issue: 8
2022
- 9Citations
- 36Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- CrossRef3
- Captures36
- Readers36
- 36
- Mentions1
- Blog Mentions1
- 1
Most Recent Blog
Life, Vol. 12, Pages 1277: A Contextual-Bandit-Based Approach for Informed Decision-Making in Clinical Trials
Life, Vol. 12, Pages 1277: A Contextual-Bandit-Based Approach for Informed Decision-Making in Clinical Trials Life doi: 10.3390/life12081277 Authors: Yogatheesan Varatharajah Brent Berry Clinical trials are
Article Description
Clinical trials are conducted to evaluate the efficacy of new treatments. Clinical trials involving multiple treatments utilize the randomization of treatment assignments to enable the evaluation of treatment efficacies in an unbiased manner. Such evaluation is performed in post hoc studies that usually use supervised-learning methods that rely on large amounts of data collected in a randomized fashion. That approach often proves to be suboptimal in that some participants may suffer and even die as a result of having not received the most appropriate treatments during the trial. Reinforcement-learning methods improve the situation by making it possible to learn the treatment efficacies dynamically during the course of the trial, and to adapt treatment assignments accordingly. Recent efforts using multi-arm bandits, a type of reinforcement-learning method, have focused on maximizing clinical outcomes for a population that was assumed to be homogeneous. However, those approaches have failed to account for the variability among participants that is becoming increasingly evident as a result of recent clinical-trial-based studies. We present a contextual-bandit-based online treatment optimization algorithm that, in choosing treatments for new participants in the study, takes into account not only the maximization of the clinical outcomes as well as the patient characteristics. We evaluated our algorithm using a real clinical trial dataset from the International Stroke Trial. We simulated the online setting by sequentially going through the data of each participant admitted to the trial. Two bandits (one for each context) were created, with four choices of treatments. For a new participant in the trial, depending on the context, one of the bandits was selected. Then, we took three different approaches to choose a treatment: (a) a random choice (i.e., the strategy currently used in clinical trial settings), (b) a Thompson sampling-based approach, and (c) a UCB-based approach. Success probabilities of each context were calculated separately by considering the participants with the same context. Those estimated outcomes were used to update the prior distributions within the bandit corresponding to the context of each participant. We repeated that process through the end of the trial and recorded the outcomes and the chosen treatments for each approach. We also evaluated a context-free multi-arm-bandit-based approach, using the same dataset, to showcase the benefits of our approach. In the context-free case, we calculated the success probabilities for the Bernoulli sampler using the whole clinical trial dataset in a context-independent manner. The results of our retrospective analysis indicate that the proposed approach performs significantly better than either a random assignment of treatments (the current gold standard) or a multi-arm-bandit-based approach, providing substantial gains in the percentage of participants who are assigned the most suitable treatments. The contextual-bandit and multi-arm bandit approaches provide 72.63% and 64.34% gains, respectively, compared to a random assignment.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know