Growth control of microbial in miscible cutting fluids using ultraviolet radiation
Lubricants, ISSN: 2075-4442, Vol: 2, Issue: 3, Page: 124-136
2014
- 1Citations
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Considering the issues involved in industrial cutting and machining systems, and, in particular, the problems arising from the use of cutting fluids in these systems, this study presents the results of an analysis that points to a safe and efficient way to reduce contaminated microbial cutting fluids using ultraviolet radiation. The study proposes a transmitter system of simple ultraviolet radiation, safe and easy to obtain. The results of this study showed that the action of ultraviolet radiation on microorganisms in metalworking fluids is very effective and leads to a significant reduction of the load of microorganisms. In addition, no changes were observed during the experimental period that would lead to impairments in the performance of the activities of the cutting fluid used. Given the results, we can conclude that the use of ultraviolet radiation in the prevention and control of contamination is an important contribution to the durability of cutting fluids in machining and grinding operations.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know