Analytical solutions for stochastic vibration of orthotropic membrane under random impact load
Materials, ISSN: 1996-1944, Vol: 11, Issue: 7
2018
- 21Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Orthotropic membrane materials have been applied in the numerous fields, such as civil engineering, space and aeronautics, and mechanical engineering, among others. During their serving lifespan, these membranes are always facing strong stochastic vibrations induced by the random impact load such as hail, heavy rain, and noise, among others. In this paper, the stochastic vibration problem of orthotropic membrane subjected to random impact load is investigated. The statistical characteristics of random impact load are initially obtained based on the stochastic pulse theory. Then, the Von Karman theory is applied to model the nonlinear vibration of membrane with geometric nonlinearity, which is then used to derive and solve the corresponding fokker-plank-kolmogorov (FPK). The theoretical model developed is validated by means of experiment study and monte carlo simulation (MCS) analysis. The effects of variables like pretension force, velocity of impact load, and material features on stochastic dynamic behavior of membranes are discussed in detail. This exposition provides theoretical framework for stochastic vibration control and design of membranes subjected to random dynamic load.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know