Long-term physical and mechanical properties and microstructures of fly-ash-based geopolymer composite incorporating carbide slag
Materials, ISSN: 1996-1944, Vol: 14, Issue: 21
2021
- 11Citations
- 7Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- CrossRef11
- 11
- Captures7
- Readers7
- Mentions1
- Blog Mentions1
- Blog1
Article Description
The long-term property development of fly ash (FA)-based geopolymer (FA–GEO) incorporating industrial solid waste carbide slag (CS) for up to 360 d is still unclear. The objective of this study was to investigate the fresh, physical, and mechanical properties and microstructures of FA–GEO composites with CS and to evaluate the effects of CS when the composites were cured for 360 d. FA–GEO composites with CS were manufactured using FA (as an aluminosilicate precursor), CS (as a calcium additive), NaOH solution (as an alkali activator), and standard sand (as a fine aggregate). The fresh property and long-term physical properties were measured, including fluidity, bulk density, porosity, and drying shrinkage. The flexural and compressive strengths at 60 d and 360 d were tested. Furthermore, the microstructures and gel products were characterized by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The results show that the additional 20.0% CS reduces the fluidity and increases the conductivity of FA–GEO composites. Bulk densities were decreased, porosities were increased, and drying shrinkages were decreased as the CS content was increased from 0.0% to 20.0% at 360 d. Room temperature is a better curing condition to obtain a higher long-term mechanical strength. The addition of 20.0% CS is more beneficial to the improvement of long-term flexural strength and toughness at room temperature. The gel products in CS–FA–GEO with 20.0% CS are mainly determined as the mixtures of sodium aluminosilicate (N–A–S–H) gel and calcium silicate hydration (C–S–H) gel, besides the surficial pan-alkali. The research results provide an experimental basis for the reuse of CS in various scenarios.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know