Application of Machine Learning Approaches to Predict the Strength Property of Geopolymer Concrete
Materials, ISSN: 1996-1944, Vol: 15, Issue: 7
2022
- 34Citations
- 86Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations34
- Citation Indexes34
- 34
- CrossRef26
- Captures86
- Readers86
- 86
Article Description
Geopolymer concrete (GPC) based on fly ash (FA) is being studied as a possible alternative solution with a lower environmental impact than Portland cement mixtures. However, the accuracy of the strength prediction still needs to be improved. This study was based on the investigation of various types of machine learning (ML) approaches to predict the compressive strength (C-S) of GPC. The support vector machine (SVM), multilayer perceptron (MLP), and XGBoost (XGB) techniques have been employed to check the difference between the experimental and predicted results of the C-S for the GPC. The coefficient of determination (R) was used to measure how accurate the results were, which usually ranged from 0 to 1. The results show that the XGB was a more accurate model, indicating an R value of 0.98, as opposed to SVM (0.91) and MLP (0.88). The statistical checks and k-fold cross-validation (CV) also confirm the high precision level of the XGB model. The lesser values of the errors for the XGB approach, such as mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE), were noted as 1.49 MPa, 3.16 MPa, and 1.78 MPa, respectively. These lesser values of the errors also indicate the high precision of the XGB model. Moreover, the sensitivity analysis was also conducted to evaluate the parameter’s contribution towards the anticipation of C-S of GPC. The use of ML techniques for the prediction of material properties will not only reduce the effort of experimental work in the laboratory but also minimize the cast and time for the researchers.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know