Corrosion Behavior in Magnesium-Based Alloys for Biomedical Applications
Materials, ISSN: 1996-1944, Vol: 15, Issue: 7
2022
- 50Citations
- 113Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations50
- Citation Indexes50
- 50
- CrossRef30
- Captures113
- Readers113
- 113
- Mentions1
- Blog Mentions1
- Blog1
Review Description
Magnesium alloys exhibit superior biocompatibility and biodegradability, which makes them an excellent candidate for artificial implants. However, these materials also suffer from lower corrosion resistance, which limits their clinical applicability. The corrosion mechanism of Mg alloys is complicated since the spontaneous occurrence is determined by means of loss of aspects, e.g., the basic feature of materials and various corrosive environments. As such, this study provides a review of the general degradation/precipitation process multifactorial corrosion behavior and proposes a reasonable method for modeling and preventing corrosion in metals. In addition, the composition design, the structural treatment, and the surface processing technique are involved as potential methods to control the degradation rate and improve the biological properties of Mg alloys. This systematic representation of corrosive mechanisms and the comprehensive discussion of various technologies for applications could lead to improved designs for Mg-based biomedical devices in the future.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know