Electrochemical SEIRAS Analysis of Imidazole-Ring-Functionalized Self-Assembled Monolayers
Materials, ISSN: 1996-1944, Vol: 15, Issue: 20
2022
- 3Citations
- 6Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Researchers at Center for Physical Sciences and Technology (FTMC) Publish New Study Findings on Hydrogen (Electrochemical SEIRAS Analysis of Imidazole-Ring-Functionalized Self-Assembled Monolayers)
2022 NOV 09 (NewsRx) -- By a News Reporter-Staff News Editor at Chemicals & Chemistry Daily Daily -- Current study results on hydrogen have been
Article Description
An essential amino acid, histidine, has a vital role in the secondary structure and catalytic activity of proteins because of the diverse interactions its side chain imidazole (Im) ring can take part in. Among these interactions, hydrogen donating and accepting bonding are often found to operate at the charged interfaces. However, despite the great biological significance, hydrogen-bond interactions are difficult to investigate at electrochemical interfaces due to the lack of appropriate experimental methods. Here, we present a surface-enhanced infrared absorption spectroscopy (SEIRAS) and density functional theory (DFT) study addressing this issue. To probe the hydrogen-bond interactions of the Im at the electrified organic layer/water interface, we constructed Au-adsorbed self-assembled monolayers (SAMs) that are functionalized with the Im group. As the prerequisite for spectroelectrochemical investigations, we first analyzed the formation of the monolayer and the relationship between the chemical composition of SAM and its structure. Infrared absorption markers that are sensitive to hydrogen-bonding interactions were identified. We found that negative electrode polarization effectively reduced hydrogen-bonding strength at the Im ring at the organic layer–water interface. The possible mechanism governing such a decrease in hydrogen-bonding interaction strength is discussed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know