Evaluation of the Influence of Grain Sizes of Nanostructured WO Ceramics on the Resistance to Radiation-Induced Softening
Materials, ISSN: 1996-1944, Vol: 16, Issue: 3
2023
- 2Citations
- 4Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Materials, Vol. 16, Pages 1028: Evaluation of the Influence of Grain Sizes of Nanostructured WO3 Ceramics on the Resistance to Radiation-Induced Softening
Materials, Vol. 16, Pages 1028: Evaluation of the Influence of Grain Sizes of Nanostructured WO3 Ceramics on the Resistance to Radiation-Induced Softening Materials doi: 10.3390/ma16031028
Article Description
The main purpose of this study is to test a hypothesis about the effect of grain size on the resistance to destruction and changes in the strength and mechanical properties of oxide ceramics subjected to irradiation. WO powders were chosen as objects of study, which have a number of unique properties that meet the requirements for their use as a basis for inert matrices of dispersed nuclear fuel. The grain-size variation in WO ceramics was investigated by mechanochemical grinding of powders with different grinding speeds. Grinding conditions were experimentally selected to obtain powders with a high degree of size homogeneity, which were used for further research. During evaluation of the strength properties, it was found that a decrease in the grain size leads to an increase in the crack resistance, as well as the hardness of ceramics. The increase in strength properties can be explained by an increase in the dislocation density and the volume contribution of grain boundaries, which lead to hardening and an increase in resistance. During determination of the radiation damage resistance, it was found that a decrease in grain size to 50–70 nm leads to a decrease in the degree of radiation damage and the preservation of the resistance of irradiated ceramics to destruction and cracking.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know