Study on the Shear Resistance Performance of Grouped Stud Connectors
Materials, ISSN: 1996-1944, Vol: 16, Issue: 20
2023
- 1Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
- Mentions1
- Blog Mentions1
- Blog1
Article Description
In order to further investigate the grouped stud effect on the force properties of stud connectors, based on the premise that the correctness of the finite element simulation method, in this paper, a finite element model of grouped stud connectors was developed, and the grouped stud effect and its sensitivity factors were analyzed in order to validate the recommended formula for calculating the shear capacity of grouped stud connectors. Results show that the number of grouped stud rows and stud row spacing have a significant influence on the grouped stud effect, and the unevenness coefficient of grouped stud force is negatively correlated with the number of grouped stud rows as well as the grouped stud row spacing. Grouped stud connectors with commonly used concrete grades greater than C50 and height-to-diameter ratios of greater than 4 in steel–concrete composite structural bridges are insensitive to changes in the concrete strength grades and the length of the studs. The direction of force transmission for grouped stud changes with the change in loading angle and the unevenness coefficient of force for the grouped stud will therefore be reduced. By comparing the results of the 62 existing groups of grouped stud connectors push-out tests, the mean of the tested to calculated value ratio was found to be 1.12, the variance was 0.023, the dispersion was small, and it was shown that the recommended formula has a high degree of accuracy. The results of this paper can be used as a theoretical basis for the study of the shear stress performance of grouped stud connectors.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know